Total Synthesis and Assignment of the Double-Bond Position and Absolute Configuration of (−**)-Pyrinodemin A**

LETTERS 2003 Vol. 5, No. 15 ²⁶¹¹-**²⁶¹⁴**

ORGANIC

Yoshiki Morimoto,* Satoru Kitao, Tatsuya Okita, and Takamasa Shoji

Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan

morimoto@sci.osaka-cu.ac.jp

Received April 28, 2003

ABSTRACT

The first asymmetric total synthesis of a structurally novel *cis***-cyclopent[***c***]isoxazolidine alkaloid, (**−**)-pyrinodemin A (3), which exhibits potent cytotoxicity, has been accomplished through a highly diastereoselective intramolecular nitrone**−**olefin cycloaddition reaction as the key step. Thus, it has been found that the hitherto unknown absolute configuration of pyrinodemin A is as indicated in the structural formula 3.**

Recently, an increasing number of structurally and bioactively unique 3-alkylpyridine alkaloids have been isolated from marine sponges of several genera.¹ In 1999, Kobayashi and co-workers reported the isolation of a structurally novel *cis*-cyclopent[*c*]isoxazolidine alkaloid, pyrinodemin A, from the marine sponge *Amphimedon* sp. collected off Nakijin, Okinawa.2 Pyrinodemin A shows potent cytotoxicity against murine leukemia L1210 (IC₅₀ = 0.058 μ g/mL) and KB epidermoid carcinoma cells ($IC_{50} = 0.5 \ \mu g/mL$) in vitro and has relatively weak antifungal activity.³ The plane structure and relative configuration of pyrinodemin A were primarily proposed as 1 on the basis of analysis of the ${}^{1}H$ and ${}^{13}C$ NMR and mass spectra. Although Kobayashi et al. also reported a family of compounds similar to pyrinodemin A obtained from the same sponge, pyrinodemins $B-D$, which possessed prominent cytotoxicity and the *cis*-cyclopent[*c*] isoxazolidine ring system characteristic of pyrinodemin A,3

the absolute configuration of pyrinodemins has not yet been determined.

natural pyrinodemin A $|\Delta \delta| = 0$ ppm

The novel structure of pyrinodemin A coupled with its bioactive and biogenetic interests prompted synthetic organic

^{(1) (}a) Andersen, R. J.; van Soest, R. W. M.; Kong, F. In *Alkaloids: Chemical and Biological Perspectives*; Pelletier, S. W., Ed.; Pergamon: Oxford. 1996: Vol. 10. pp 301–355. (b) Faulkner. D. J. *Nat. Prod. Ren.* Oxford, 1996; Vol. 10, pp 301-355. (b) Faulkner, D. J. *Nat. Prod. Rep.* **¹⁹⁹⁹**, *¹⁶*, 155-198 and references therein.

⁽²⁾ Tsuda, M.; Hirano, K.; Kubota, T.; Kobayashi, J. *Tetrahedron Lett.* **¹⁹⁹⁹**, *⁴⁰*, 4819-4820.

⁽³⁾ Hirano, K.; Kubota, T.; Tsuda, M.; Mikami, Y.; Kobayashi, J. *Chem. Pharm. Bull.* **²⁰⁰⁰**, *⁴⁸*, 974-977.

chemists to investigate its synthesis. The groups of Snider4 and Baldwin⁵ have recently synthesized in a racemic form the originally proposed structure **1** for pyrinodemin A and positional isomer **2** of the double bond; further, Baldwin's group6 has also reported the racemic synthesis of positional isomer **3** of the double bond. Both groups concluded that the position of the double bond in the natural product was incorrectly assigned between $C16' - C17'$, mainly on the basis of critical carbon chemical shift differences (∆*δ*) observed between the olefinic carbons, $|\Delta \delta| = 1.0$ ppm (Snider), 1.1 ppm (Baldwin) in **1**; $|\Delta \delta| = 0$ ppm in natural pyrinodemin A. In light of the difference $|\Delta \delta| = 0.4$ ppm in **2**, Baldwin's group reported that **2** does not correspond to the natural product as well. In contrast, Snider's group concluded that **2** is probably the correct structure of pyrinodemin A, albeit $|\Delta\delta| = 0.4$ ppm in 2. On the other hand, Baldwin's group suggested the C14′-C15′ double-bond positional isomer **³** as a possible structure of pyrinodemin A because $|\Delta \delta|$ = 0.02 ppm in **3** is nearer to the natural $|\Delta \delta| = 0$ ppm. Thus, there has been inconsistency with the correct structure of natural pyrinodemin A between both groups. In this paper, we report the racemic synthesis of possible structures **²**-**⁴** for pyrinodemin A and support the C14'-C15' double-bond positional isomer **3**, which Baldwin's group proposed, as the correct structure. Furthermore, we report the first enantioselective total synthesis of $(-)$ -pyrinodemin A (3) through a highly diastereoselective intramolecular 1,3-dipolar cycloaddition reaction as the key step and the determination of its absolute configuration.

In comparison of the synthetic compounds $1-3$ with the natural product, the most critically discriminating point is ∆*δ* between the olefinic carbons. The farther the position of the double bond is from the isoxazolidine ring, the nearer the value of ∆*δ* is to zero in natural pyrinodemin A. Therefore, we were interested in the ∆*δ* of compound **4**, which has the double bond one carbon farther from the isoxazolidine ring than **3**. Thus, we first embarked on the synthesis of **4** as an alternative possible structure for pyrinodemin A.

The preparation of hydroxylamine **15c** required for the synthesis of **4** began with THP protection of 6-bromo-1 hexanol (**6**) (Scheme 1). Alkylation of the lithium acetylide ethylenediamine complex with bromide $7 (n = 6)^7$ in DMSO containing Na^{14} afforded terminal alkyne **8** ($n = 6$) in 82% yield. Coupling of the lithium acetylide of $\mathbf{8}$ ($n = 6$) with bromide 10 ($m = 6$),⁸ prepared by alkylating a lithio derivative of 3-picoline (**9**)9 with 1,5-dibromopentane, provided alkyne **11c**, hydrogenation of which over Lindlar

^a Reagents and conditions: (a) 3,4-dihydro-2*H*-pyran, 10-camphorsulfonic acid, CH₂Cl₂, 0 °C, 2 h, 100%; (b) LiC=CH·H₂N- $(CH_2)_{2}NH_2$, NaI, DMSO, rt, 4 h, 82%; (c) 9, LDA, THF, -78 °C, 30 min, then $Br(CH_2)_{m-1}Br$ (*m* = 6, 7, 8), -78 °C to room temperature, 12 h; (d) lithium acetylide of **8**, 1,3-dimethyl-3,4,5,6 tetrahydro-2(1*H*)-pyrimidinone/THF (1:1), -15 °C to room temperature, 16 h; (e) H_2 , 5% Pd-CaCO₃, EtOAc, rt, 18 h; (f) p -TsOH·H₂O, EtOH, rt, 45 min; (g) (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C to room temperature, 1 h; (h) NH₂OH·HCl, KOH, MeOH, rt, 30 min, then HCl (pH 3), NaBH3CN, rt, 2 h; (i) **14a**, toluene, rt, 40 min, then reflux, 13 h.

catalyst yielded *cis*-alkene **12c**. Deprotection of the THP ether in $12c$ and Swern oxidation¹⁰ of the resulting alcohol **13c** gave aldehyde **14c**, which was converted into the desired hydroxylamine **15c** by reductive amination with hydroxylamine and sodium cyanoborohydride in good yields. Dehydration condensation of the hydroxylamine **15c** and aldehyde **14a**, prepared from 5-hexyn-1-ol (**5**) by a similar sequence of reactions, generated a nitrone intermediate, an intramolecular 1,3-dipolar cycloaddition¹¹ of which in situ proceeded in refluxing toluene to diastereoselectively produce the fourth double-bond positional isomer **4** in 92% yield.4-6,12 The synthesis of other possible double-bond positional isomers

⁽⁴⁾ Snider, B. B.; Shi, B. *Tetrahedron Lett.* **²⁰⁰¹**, *⁴²*, 1639-1642.

⁽⁵⁾ Baldwin, J. E.; Romeril, S. P.; Lee, V.; Claridge, T. D. W. *Org. Lett.* **²⁰⁰¹**, *³*, 1145-1148. (6) Romeril, S. P.; Lee, V.; Claridge, T. D. W.; Baldwin, J. E.

Tetrahedron Lett. **²⁰⁰²**, *⁴³*, 327-329.

⁽⁷⁾ All new compounds reported here were satisfactorily characterized on the basis of their ¹H and ¹³C NMR, IR, MS, and HRMS spectra. For selected characterization data, see Supporting Information.

^{(8) (}a) Torisawa, Y.; Hashimoto, A.; Nakagawa, M.; Seki, H.; Hara, R.; Hino, T. *Tetrahedron* **¹⁹⁹¹**, *⁴⁷*, 8067-8078. (b) Morimoto, Y.; Yokoe, C. *Tetrahedron Lett.* **¹⁹⁹⁷**, *³⁸*, 8981-8984. (c) Morimoto, Y.; Yokoe, C.; Kurihara, H.; Kinoshita, T. *Tetrahedron* **¹⁹⁹⁸**, *⁵⁴*, 12197-12214. (9) Davies-Coleman, M. T.; Faulkner, D. J.; Dubowchik, G. M.; Roth,

G. P.; Polson, C.; Fairchild, C. *J. Org. Chem.* **¹⁹⁹³**, *⁵⁸*, 5925-5930.

^{(10) (}a) Mancuso, A. J.; Huang, S.-L.; Swern, D. *J. Org. Chem.* **1978**, *⁴³*, 2480-2482. (b) Omura, K.; Swern, D. *Tetrahedron* **¹⁹⁷⁸**, *³⁴*, 1651- 1660.

^{(11) (}a) Tufariello, J. J. In *1,3-Dipolar Cycloaddition Chemistry*; Padwa, A., Ed.; Wiley: New York, 1984; Vol. 2, p 87. (b) Confalone, P. N.; Huie, E. M. *Org. React.* **1988**, 36, 1-173. (c) Wade, P. A. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 4, pp 1111-1168.

2 and **3** was also carried out by the same synthetic methodology as that of **4**.

The ¹³C NMR spectral data and $|\Delta \delta| = 0.4$ ppm of our synthetic **2**⁷ were identical to those of the authentic sample reported by Snider and Baldwin.^{4,5} The $|\Delta \delta| = 0.02$ ppm of our synthetic **3** was also identical to Baldwin's ∆*δ*. 6 Surprisingly, it has been found that the $|\Delta \delta| = 0.3$ ppm of synthetic **4** becomes larger than that of **3**. Moreover, the 13C NMR data of **3** were in better agreement with the literature data of natural product than either **2** or **4**. ⁷ Therefore, we conclude that the structure **³** with a C14′-C15′ double bond is the correct one of natural pyrinodemin A as proposed by Baldwin et al.

To solve the problem of the absolute configuration of pyrinodemin A, we next planned the enantioselective synthesis of the natural product employing chiral aldehyde **24** with an asymmetric center at the allylic C17 position instead of aldehyde **14a** (Scheme 2). Commercially available (*R*)-

a Reagents and conditions: (a) **9**, LDA, THF, -78 °C, 30 min, then Br(CH₂₎₈Br, -78 °C to room temperature, 9 h, 65%; (b) HBr, PPh₃, CH₃CN, reflux, 29 h, 93%; (c) MOMCl, *i*-Pr₂NEt, CH₂Cl₂, 0 °C to room temperature, 41 h, 88%; (d) DIBALH, toluene, -78 °C, 1 h, 89%; (e) **¹⁷**, KHMDS, THF, 0 °C, 1 h, then **²⁰**, -⁷⁸ °^C to room temperature, 30 min, 91%; (f) MsCl, Et₃N, CH₂Cl₂, 0 °C to room temperature, 1 h, 81% ; (g) KCN, 18-crown-6, CH₃CN, 50 $°C$, 20 h, 90%; (h) DIBALH, toluene, -78 $°C$, 20 min, 81%; (i) **15b**, toluene, reflux, 13 h, 95%; (j) HCl, EtOH, 50 °C, 16 h, 95%; (k) PhOCSCl, DMAP, CH₃CN, rt, 41 h; (l) *n*-Bu₃SnH, AIBN, toluene, 100 °C, 10 min, 59% (two steps).

(+)-R-hydroxy-*γ*-butyrolactone (**18**) was chosen as a starting material. MOM protection of the hydroxy group in lactone **18** and subsequent DIBALH reduction of lactone **19** at -78 °C afforded lactol **20** in good overall yield. Phosphonium bromide **17**, requisite for Wittig reaction with the lactol **20**, was prepared from 3-picoline (**9**) by alkylation with 1,8 dibromooctane and subsequent substitution with triphenylphosphine.13 Wittig olefination of the lactol **20** with a phosphorane generated by treating phosphonium bromide **17** with potassium hexamethyldisilazide (KHMDS) stereoselectively provided only (*Z*)-alkene 21 ($J = 10.9$ Hz between the olefinic protons) in 91% yield. One-carbon homologation of the alcohol **21** was performed by mesylation and substitution with KCN in the presence of 18-crown-6 to yield nitrile **23**, which was reduced to aldehyde **24** by DIBALH. An intramolecular asymmetric 1,3-dipolar cycloaddition reaction14 of the alkenylnitrone derived from hydroxylamine **15b** and chiral aldehyde **24** proceeded smoothly to construct the desired *cis*-cyclopent[*c*]isoxazolidine ring system in 95% yield and excellent diastereoselectivity (>99:1).

The stereochemistry of the bicyclic ring system in **25** was unambiguously confirmed by the coupling constant J_{16-17} $= 2.6$ Hz and the presence of NOEs observed between the diagnostic protons14b as shown in Figure 1. The high

Figure 1. Diagnostic NOEs observed in **25**. Hydrogens on C18 and C19 have been omitted for clarity.

diastereoselectivity might be rationalized as follows. In the transition states **b** and **c** leading to another diastereomer, sterically encumbered $A^{1,3}$ -strain¹⁵ and 1,3-diaxial-like interaction¹⁶ occur between respective substituents as shown in Figure 2. Therefore, because the transition state **a** without

Figure 2. Plausible transition states leading to **25**. For R and R′, see Figure 1.

such a repulsive interaction becomes much more stable than **b** and **c**, 25 might exclusively be formed.¹⁴

Deprotection of the MOM ether in **25** under acidic conditions gave alcohol **26**, wherein deoxygenation of the secondary hydroxy group was effected by means of the following stepwise reactions: (1) thionocarbonate formation with phenyl chlorothionoformate and (2) reduction with $n-Bu_3SnH$ in the presence of AIBN radical initiator.¹⁷ The spectral characteristics (1H and 13C NMR and EI-MS) of synthetic **3**,¹⁸ [α]²⁶ β -6.42 (*c* 0.94, CHCl₃) (lit.² [α]²⁵ β -9 $(c \t1.0, CHCl₃)$, were identical to those reported for the natural product.2 Thus, it has been found that the hitherto unknown absolute configuration of pyrinodemin A is as indicated in the structural formula **3**.

In conclusion, we have achieved the racemic synthesis of possible structures **²**-**⁴** for pyrinodemin A and assigned the C14^{'-}C15['] position to the correct double-bond structure as had been proposed by Baldwin et al. We have also accomplished the first asymmetric total synthesis of $(-)$ pyrinodemin A (**3**), featuring a highly diastereoselective intramolecular nitrone-olefin cycloaddition, and determined the absolute configuration of $(-)$ -3. These results may imply the unknown absolute configuration of pyrinodemins $B-D$ related to $(-)$ -3 and will be essential for investigating their structure-activity relationships and biogenesis.

Acknowledgment. We thank Professors J. Kobayashi and M. Tsuda, Hokkaido University, for copies of the spectral data of natural pyrinodemin A. This research was partly supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science and the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Supporting Information Available: Experimental procedures and characterization data for 4 and $(-)$ -3, characterization data for **2** and the natural product, and copies of ¹H and ¹³C NMR and MS spectra of **2**, **4**, (-)-3, and the natural product. This material is available free of charge via the Internet at http://pubs.acs.org.

OL034700V

⁽¹²⁾ For regiochemistry in the intramolecular cycloadditions of 5-alkenylnitrones, see: (a) LeBel, N. A.; Whang, J. J. *J. Am. Chem. Soc.* **¹⁹⁵⁹**, *⁸¹*, 6334-6335. (b) LeBel, N. A.; Post, M. E.; Whang, J. J. *J. Am. Chem. Soc.* **¹⁹⁶⁴**, *⁸⁶*, 3759-3767. (c) Baldwin, S. W.; Wilson, J. D.; Aube´, J. *J. Org. Chem.* **¹⁹⁸⁵**, *⁵⁰*, 4432-4439.

^{(13) (}a) Staab, H. A.; Zipplies, M. F.; Müller, T.; Storch, M.; Krieger, C. *Chem. Ber.* **¹⁹⁹⁴**, *¹²⁷*, 1667-1680. (b) Kaiser, A.; Marazano, C.; Maier, M. *J. Org. Chem.* **¹⁹⁹⁹**, *⁶⁴*, 3778-3782.

^{(14) (}a) Gothelf, K. V.; Jørgensen, K. A. *Chem. Re*V*.* **¹⁹⁹⁸**, *⁹⁸*, 863- 909. (b) Tamura, O.; Mita, N.; Okabe, T.; Yamaguchi, T.; Fukushima, C.; Yamashita, M.; Morita, Y.; Morita, N.; Ishibashi, H.; Sakamoto, M. *J. Org. Chem.* **²⁰⁰¹**, *⁶⁶*, 2602-2610. (c) Chiacchio, U.; Corsaro, A.; Iannazzo, D.; Piperno, A.; Procopio, A.; Rescifina, A.; Romeo, G.; Romeo, R. *J. Org. Chem.* **²⁰⁰²**, *⁶⁷*, 4380-4383.

⁽¹⁵⁾ Hoffmann, R. W. *Chem. Re*V*.* **¹⁹⁸⁹**, *⁸⁹*, 1841-1860.

⁽¹⁶⁾ Hirsch, J. A. In *Topics in Stereochemistry*; Allinger, N. L.; Eliel, E. L., Eds.; Wiley: New York, 1967; Vol. 1, pp 199-222.

^{(17) (}a) Barton, D. H. R.; McCombie, S. W. *J. Chem. Soc., Perkin Trans. ¹* **¹⁹⁷⁵**, 1574-1585. (b) Barton, D. H. R.; Jaszberenyi, J. C. *Tetrahedron Lett.* **1989**, *30*, 2619-2622. (c) Nagasawa, K.; Georgieva, A.; Koshino, H.; Nakata, T.; Kita, T.; Hashimoto, Y. *Org. Lett.* **2002**, 4, 177-180.

H.; Nakata, T.; Kita, T.; Hashimoto, Y. *Org. Lett.* **²⁰⁰²**, *⁴*, 177-180. (18) Optical purity of synthetic **3** has been determined to be $>99%$ eederivatization of alcohol **26** to a Mosher ester and integration of the by derivatization of alcohol **26** to a Mosher ester and integration of the signals in the 1H NMR spectrum (Dale, J. A.; Dull, D. L.; Mosher, H. S. *J. Org. Chem.* **¹⁹⁶⁹**, *³⁴*, 2543-2549).